CloudMind AI - Implementation Summary
CloudMind AI - Implementation Summary
Overview
CloudMind AI is a complete open source platform for automated management and optimization of cloud resources across AWS, Azure, Google Cloud, and on-premises infrastructure using modern artificial intelligence models.
Architecture
Project Structure
cloudmind-ai/
βββ src/cloudmind/ # Main source code
β βββ core/ # Core functionality
β β βββ config.py # Configuration management
β β βββ logger.py # Logging system
β β βββ models.py # Data models
β β βββ exceptions.py # Custom exceptions
β βββ providers/ # Cloud provider implementations
β β βββ base.py # Abstract base class
β β βββ aws.py # AWS provider
β β βββ azure.py # Azure provider
β β βββ gcp.py # Google Cloud provider
β β βββ onprem.py # On-premises provider
β βββ ai/ # AI/ML services
β β βββ optimizer.py # Optimization service
β βββ monitoring/ # Monitoring services
β β βββ service.py # Monitoring service
β βββ api/ # REST API
β β βββ main.py # FastAPI application
β βββ cli/ # Command-line interface
β β βββ main.py # Typer CLI application
β βββ utils/ # Utility functions
β βββ helpers.py # Helper functions
βββ tests/ # Test suite
β βββ unit/ # Unit tests (32 tests)
β βββ integration/ # Integration tests
βββ docs/ # Documentation
β βββ getting_started.md # Getting started guide
β βββ api_reference.md # API reference
βββ examples/ # Usage examples
β βββ basic_usage.py # Basic usage example
β βββ multi_cloud.py # Multi-cloud example
βββ cloudmind_api.py # API server entry point
βββ cloudmind_cli.py # CLI entry point
βββ requirements.txt # Python dependencies
βββ .env.example # Example configuration
βββ README.md # Main documentation
Key Features
1. Multi-Cloud Support
- AWS: EC2, S3, RDS, Lambda support
- Azure: Virtual Machines, Storage, SQL Database
- Google Cloud: Compute Engine, Cloud Storage, Cloud SQL
- On-Premises: Infrastructure monitoring and management
2. AI-Powered Optimization
- LLM integration for intelligent resource analysis
- ML models for usage prediction and forecasting
- Automated cost optimization recommendations
- Configurable confidence thresholds
3. Resource Management
- Start, stop, resize, and delete resources
- Cross-cloud resource inventory
- Real-time metrics collection
- Historical data tracking
- Custom alert configurations
4. Monitoring System
- Continuous resource monitoring
- CPU, memory, disk, and network metrics
- Health status assessments
- Alert threshold management
- Metrics history retention
5. REST API
17 comprehensive endpoints:
- Resource listing (compute, storage, database)
- Metrics retrieval
- Cost tracking
- Optimization recommendations
- Resource management operations
6. Command-Line Interface
Rich CLI with commands for:
- Resource listing and management
- Metrics viewing
- Optimization analysis
- API server management
Configuration
Environment-based configuration with support for:
- Multiple cloud providers
- API settings
- AI/ML configuration
- Monitoring parameters
- Optimization settings
Example .env file provided with sensible defaults.
Testing
Comprehensive test suite:
- 32 unit tests covering:
- Configuration management
- Data models
- Provider factory
- AI optimizer
- Utility functions
- 100% test pass rate
- Pytest integration
- Test documentation
Documentation
Complete documentation including:
- Getting Started Guide
- API Reference
- Usage Examples
- Test Documentation
- Architecture Overview
Technology Stack
- Python 3.8+: Core language
- FastAPI: Modern REST API framework
- Typer: CLI framework
- Pydantic: Data validation
- Rich: Terminal formatting
- Uvicorn: ASGI server
- Pytest: Testing framework
Installation
# Clone repository
git clone https://github.com/NickScherbakov/cloudmind-ai.git
cd cloudmind-ai
# Install dependencies
pip install -r requirements.txt
# Configure
cp .env.example .env
# Edit .env with your credentials
Usage
Start API Server
python cloudmind_api.py
Access API documentation at: http://localhost:8000/docs
Use CLI
# Show version
python cloudmind_cli.py version
# List resources
python cloudmind_cli.py list-resources --provider aws --type compute
# Get optimization recommendations
python cloudmind_cli.py optimize
Programmatic Usage
from cloudmind.core.config import settings
from cloudmind.providers import ProviderFactory
from cloudmind.core.models import CloudProvider
# Initialize provider
config = {"region": "us-east-1"}
provider = ProviderFactory.create_provider(CloudProvider.AWS, config)
provider.authenticate()
# List resources
resources = provider.list_compute_resources()
Future Enhancements
- Enhanced ML models for usage prediction
- Advanced cost forecasting
- Multi-region optimization
- Web dashboard UI
- Kubernetes integration
- Terraform integration
- Slack/Teams notifications
- Cost anomaly detection
- Compliance checking
License
MIT License - see LICENSE file for details.
Contributing
Contributions are welcome! Please see the contribution guidelines in the repository.
Support
For questions and support, please open an issue on GitHub.