CloudMind AI - Implementation Summary
CloudMind AI - Implementation Summary
Overview
CloudMind AI is a complete open source platform for automated management and optimization of cloud resources across AWS, Azure, Google Cloud, and on-premises infrastructure using modern artificial intelligence models.
Architecture
Project Structure
cloudmind-ai/
├── src/cloudmind/ # Main source code
│ ├── core/ # Core functionality
│ │ ├── config.py # Configuration management
│ │ ├── logger.py # Logging system
│ │ ├── models.py # Data models
│ │ └── exceptions.py # Custom exceptions
│ ├── providers/ # Cloud provider implementations
│ │ ├── base.py # Abstract base class
│ │ ├── aws.py # AWS provider
│ │ ├── azure.py # Azure provider
│ │ ├── gcp.py # Google Cloud provider
│ │ └── onprem.py # On-premises provider
│ ├── ai/ # AI/ML services
│ │ └── optimizer.py # Optimization service
│ ├── monitoring/ # Monitoring services
│ │ └── service.py # Monitoring service
│ ├── api/ # REST API
│ │ └── main.py # FastAPI application
│ ├── cli/ # Command-line interface
│ │ └── main.py # Typer CLI application
│ └── utils/ # Utility functions
│ └── helpers.py # Helper functions
├── tests/ # Test suite
│ ├── unit/ # Unit tests (32 tests)
│ └── integration/ # Integration tests
├── docs/ # Documentation
│ ├── getting_started.md # Getting started guide
│ └── api_reference.md # API reference
├── examples/ # Usage examples
│ ├── basic_usage.py # Basic usage example
│ └── multi_cloud.py # Multi-cloud example
├── cloudmind_api.py # API server entry point
├── cloudmind_cli.py # CLI entry point
├── requirements.txt # Python dependencies
├── .env.example # Example configuration
└── README.md # Main documentation
Key Features
1. Multi-Cloud Support
- AWS: EC2, S3, RDS, Lambda support
- Azure: Virtual Machines, Storage, SQL Database
- Google Cloud: Compute Engine, Cloud Storage, Cloud SQL
- On-Premises: Infrastructure monitoring and management
2. AI-Powered Optimization
- LLM integration for intelligent resource analysis
- ML models for usage prediction and forecasting
- Automated cost optimization recommendations
- Configurable confidence thresholds
3. Resource Management
- Start, stop, resize, and delete resources
- Cross-cloud resource inventory
- Real-time metrics collection
- Historical data tracking
- Custom alert configurations
4. Monitoring System
- Continuous resource monitoring
- CPU, memory, disk, and network metrics
- Health status assessments
- Alert threshold management
- Metrics history retention
5. REST API
17 comprehensive endpoints:
- Resource listing (compute, storage, database)
- Metrics retrieval
- Cost tracking
- Optimization recommendations
- Resource management operations
6. Command-Line Interface
Rich CLI with commands for:
- Resource listing and management
- Metrics viewing
- Optimization analysis
- API server management
Configuration
Environment-based configuration with support for:
- Multiple cloud providers
- API settings
- AI/ML configuration
- Monitoring parameters
- Optimization settings
Example .env file provided with sensible defaults.
Testing
Comprehensive test suite:
- 32 unit tests covering:
- Configuration management
- Data models
- Provider factory
- AI optimizer
- Utility functions
- 100% test pass rate
- Pytest integration
- Test documentation
Documentation
Complete documentation including:
- Getting Started Guide
- API Reference
- Usage Examples
- Test Documentation
- Architecture Overview
Technology Stack
- Python 3.8+: Core language
- FastAPI: Modern REST API framework
- Typer: CLI framework
- Pydantic: Data validation
- Rich: Terminal formatting
- Uvicorn: ASGI server
- Pytest: Testing framework
Installation
# Clone repository
git clone https://github.com/NickScherbakov/cloudmind-ai.git
cd cloudmind-ai
# Install dependencies
pip install -r requirements.txt
# Configure
cp .env.example .env
# Edit .env with your credentials
Usage
Start API Server
python cloudmind_api.py
Access API documentation at: http://localhost:8000/docs
Use CLI
# Show version
python cloudmind_cli.py version
# List resources
python cloudmind_cli.py list-resources --provider aws --type compute
# Get optimization recommendations
python cloudmind_cli.py optimize
Programmatic Usage
from cloudmind.core.config import settings
from cloudmind.providers import ProviderFactory
from cloudmind.core.models import CloudProvider
# Initialize provider
config = {"region": "us-east-1"}
provider = ProviderFactory.create_provider(CloudProvider.AWS, config)
provider.authenticate()
# List resources
resources = provider.list_compute_resources()
Future Enhancements
- Enhanced ML models for usage prediction
- Advanced cost forecasting
- Multi-region optimization
- Web dashboard UI
- Kubernetes integration
- Terraform integration
- Slack/Teams notifications
- Cost anomaly detection
- Compliance checking
License
MIT License - see LICENSE file for details.
Contributing
Contributions are welcome! Please see the contribution guidelines in the repository.
Support
For questions and support, please open an issue on GitHub.